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Abstract

Objective—To investigate the association between single nucleotide polymorphisms (SNPs) 

located across the major histocompatibility complex and susceptibility to diisocyanate-induced 

asthma (DA).

Methods—The study population consisted of 140 diisocyanate-exposed workers. Genotyping 

was performed using the Illumina GoldenGate major histocompatibility complex panels.
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Results—The HLA-E rs1573294 and HLA-DPB1 rs928976 SNPs were associated with an 

increased risk of DA under dominant (odds ratio [OR], 6.27; 95% confidence interval [CI], 2.37 to 

16.6; OR, 2.79, 95% CI, 0.99 to 7.81, respectively) and recessive genetic models (OR, 6.27, 95% 

CI, 1.63 to 24.13; OR, 10.10, 95% CI, 3.16 to 32.33, respectively). The HLA-B rs1811197, HLA-

DOA rs3128935, and HLA-DQA2 rs7773955 SNPs conferred an increased risk of DA in a 

dominant model (OR, 7.64, 95% CI, 2.25 to 26.00; OR, 19.69, 95% CI, 2.89 to 135.25; OR, 8.43, 

95% CI, 3.03 to 23.48, respectively).

Conclusion—These results suggest that genetic variations within HLA genes play a role in DA 

risk.

Diisocyanates, low-molecular-weight reactive chemicals used in the production of paints 

and polyurethanes, are one of the most common causes of occupational asthma. Toluene 

diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), and hexamethylene 

diisocyanate (HDI) are the most commonly used isocyanates. Between 5% and 15% of 

workers with continuous long-term exposure to diisocyanates develop asthma.1–3 Toluene 

diisocyanate alone was reported to account for between 2.9% and 13% of all occupational 

asthma cases in Korea.4 Genetic association studies have underscored the importance of 

human leucocyte antigen (HLA) genes within major histocompatibility complex (MHC) as 

susceptibility loci for a number of complex diseases with an immune/inflammatory nature 

including occupational asthma.5–7 Since both HLA class I and II molecules are involved in 

the presentation of antigens to T-cell receptors, genetic research has focused on identifying 

interindividual differences in their ability to bind peptides and influence T-cell recognition. 

Evidence has shown that certain HLA class II alleles contribute to the risk of asthma caused 

by diisocyanates and other low-molecular-weight sensitizers (eg, trimellic anhydride and 

platinum salts).8–10 Earlier studies reported associations between the HLA-DQB1 alleles and 

altered risk of diisocyanate-induced asthma (DA).8,11 Recently, haplotypes including HLA-

DRB1, -DQB1, and -DPB1 alleles were found to be associated with an increased risk of TDI 

asthma in Koreans.12,13 Hur et al 14 also reported an association between a haplotype 

carrying the HLA-DRB1, -DQB1, and -DPB1 alleles and elevated serum-specific 

immunoglobulin G (IgG) levels in MDI-exposed workers.

Although the HLA complex is one of the most extensively studied regions in the human 

genome, other genes in the MHC region have not yet been sufficiently investigated with 

regard to disease association. The MHC, located on the short arm of chromosome 6 (6p21.3, 

28 970 148- 33 883 424 bp), is one of the most polymorphic and gene-dense regions of the 

genome. This region spans nearly 4 Mb and encodes more than 180 highly polymorphic 

genes, many of which influence immune function, susceptibility to complex diseases, and 

the outcome of tissue transplantation.15 In addition to genes in the HLA complex, several 

functionally important genes are located in this region including the genes for complement 

proteins C4, C2, and Factor B, the cytokines tumor necrosis factor α and β, and TAP 

(antigen peptide transporter) genes that function in antigen processing.

The dense genetic organization and extensive linkage disequilibrium (LD) patterns of the 

region complicate the search for susceptibility alleles. Although various MHC variants have 

been shown to be involved in susceptibility to autoimmune, infectious, and inflammatory 
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diseases, thus far, only a limited number of HLA genes have been examined with respect to 

DA. This is the first study investigating the association of single nucleotide polymorphisms 

(SNPs) located across the entire MHC region with DA in a well-characterized worker 

population using microarray technology.

MATERIALS AND METHODS

Subjects

The study population consisted of 140 workers exposed to diisocyanates (HDI, MDI, and 

TDI). Of these, 73 were diagnosed with DA (DA+) on the basis of a positive specific 

inhalation challenge (SIC) test and 67 were asymptomatic workers (AWs) exposed to HDI. 

Symptomatic subjects were recruited from occupational pulmonary disease clinics located in 

Canada (Hôpital du Sacré-Coeurde Montréal, Montréal, 124 subjects; Laval Hospital, 

Sainte-Foy, 12 subjects; University Health Network, Toronto, Ontario, 2 subjects) and Spain 

(Fundación Jiménez Díaz, Madrid, 2 subjects). The subjects underwent SIC testing with the 

appropriate work-relevant diisocyanate chemicals according to previously described 

protocols.16,17 Patients were classified as DA+ on the basis of their positive response to SIC. 

A decrease in FEV1 (forced expiratory volume in the first second of expiration) of at least 

20% from prechallenge baseline during the early and/or late asthmatic response was defined 

as a positive SIC test. The AW controls were recruited in Quebec, Canada, from HDI-

exposed painters and evaluated by occupational history, spirometry, and skin prick testing. 

Data regarding age, sex, ethnicity, smoking status, and time of exposure were collected by 

questionnaire. Atopy was evaluated by skin prick testing to common aeroallergens, defined 

by a positive reaction of at least 3 mm greater than saline control for at least one allergen. 

Antibodies were detected by isotype-specific enzyme-linked immunosorbent assay tests, as 

previously described.18 Whole blood was collected for genetic testing. All subjects provided 

written informed consent, and the study protocol was approved by institutional review 

boards of National Institute for Occupational Safety and Health and each participating 

institution.

Genotyping

Genomic DNA was extracted from whole blood samples by using the QIAamp blood kit 

(QIAGEN Inc, Chatsworth, CA). Genotyping was performed according to the standard 

protocol provided by Illumina using the MHC Panel Set and Golden Gate protocol (Illumina 

Inc, San Diego, CA). The MHC SNP set consisted of two oligonucleotide pools, MHC 

Mapping Panel and MHC Exon-Centric Panel for 1228 and 1293 SNP loci, respectively. 

Both panels cover 2360 independent loci spaced at an average of 2.08 kb (range, 0.005 to 

71.05 kb). Genotyping was performed in a 16-well format universal BeadChips. A total of 

250 ng to 1 μg DNA was used for each assay, depending on the source. Genotypes were auto 

called using the BeadStudio software.

The genotype confidence score of the assay was set to 0.5. Data quality was assessed by 

controlling for discrepancies between 161 overlapping SNPs in the two panels. SNPs with 

more than two discrepant calls were removed from further analysis. In the remaining 

overlapping SNPs, consistency was 99.9%. Replicate sample comparisons within and across 
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DNA genotyping plates also demonstrated high agreement (data not shown). Alleles that 

were not called in a sample were coded as missing in the analysis. A total of 140 samples 

and 2202 SNPs passed our quality control criteria and included in the final analysis.

Statistical Analyses

All statistical analyses were conducted using either SAS/STAT for Windows or R 

programming within Bioconductor. Comparisons between groups on demographic variables 

were analyzed using two-sample t tests and chi-squared tests for continuous and categorical 

variables, respectively. Initial analyses, including tests for Hardy-Weinberg Equilibrium, 

allele, and genotype frequencies, were calculated using the Fisher exact test. A Bonferroni 

adjustment for multiple comparisons from the array was performed on the 2 by 3 genotype 

and 2 by 2 allele frequency tables. Unadjusted odds ratios (OR) were calculated using 

contingency tables. Adjusted ORs were calculated using logistic regression while adjusting 

for age, exposure time (months), smoking (current/ex/never), pack years, height, sex, and 

atopic status. Since underlying genetic models are unknown a priori, the association between 

each SNP and DA status was analyzed using three genetic models. These include a dominant 

model (comparing homozygous wild-type genotype with variant allele-carrying genotypes), 

recessive model (comparing wild-type allele-carrying genotypes with homozygous variant 

genotype), and an additive model. Prior to the final analyses, we utilized the MICE 

algorithm (Multiple Imputations by Chained Equations) to impute missing data. Three 

independent imputations were generated and age, sex, height, exposure duration, smoking, 

and atopy were appended to each data set. There were no substantive differences between 

the 3 imputations and we present the results from the first imputation. SNAP2 tools were 

used to update annotations of significant SNPs according to dbSNP135 and to find proxy 

SNPs within 500 kb based on LD and physical distance.19 RegulomeDB was used to 

annotate SNPs with known and predicted regulatory elements.20

RESULTS

Subject Characteristics

The demographic characteristics of the study groups included in the statistical analyses are 

described in Table 1. A total of 92% of the symptomatic workers diagnosed with DA (DA+) 

and 99% of the asymptomatic exposed workers (AW) were white French Canadians. Mean 

age was higher in the DA+ group than in AW controls (42.4 vs 30.0 years). While the DA+ 

group consisted of subjects exposed to HDI, MDI, and TDI (39, 15, and 18, respectively), 

the AW controls were exposed to HDI in the workplace. The AW controls had less duration 

of exposure to isocyanates than the DA+ group (63.4 vs 146.3 months). The frequency of 

atopy was similar in groups (54% in DA+ and 56% in AWs). The number of pack years was 

higher in the DA+ group than in AW controls (9.4 vs 6.2 years). The allele frequencies in 

the control population were in Hardy–Weinberg equilibrium (data not shown).

Genotype Distribution and Genetic Models

SNPs in HLA-E, HLA-B, HLA-DOA, HLA-DQA2, and HLA-DPB1 genes (rs1573294, 

rs1811197, rs3128935, rs7773955, and rs928976, respectively) remained significantly 

associated with DA after the Bonferroni adjustment for multiple testing. Table 2 shows the 
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distribution of genotypes in the study population. There were no SNPs that were statistically 

significant under an additive model and thus only the dominant and recessive models are 

presented (Table 3). The rs1573294 SNP was associated with an increased risk of DA under 

dominant and recessive genetic models (OR, 6.27, 95% confidence interval [CI], 2.37 to 

16.61; OR, 6.27, 95% CI, 1.63 to 24.13, respectively). The HLA-B rs1811197, HLA-DOA 

rs3128935, and HLA-DQA2 rs7773955 SNPs conferred an increased risk of DA in a 

dominant model (OR, 7.64, 95% CI, 2.25 to 26.00; OR, 19.69, 95% CI, 2.89 to 135.25; OR, 

8.43, 95% CI, 3.03 to 23.48, respectively). The HLA-DPB1 rs928976 SNP was also 

associated with higher risk of DA under dominant and recessive genetic models (OR, 2.79, 

95% CI, 0.99 to 7.81; and OR, 10.10, 95% CI, 3.16 to 32.33). No association was found 

between non-HLA gene variants and DA.

Regulatory Information for Significant Associations

Five unique significant SNPs were used as inputs to the SNP Annotation and Proxy Search 

tool to find highly correlated SNPs within 500 kb (using an r2 of 1).20 This led to the 

identification of an additional 34 correlated SNPs using data from the International HapMap 

Project.21 The total set of 39 SNPs was then used as inputs to the RegulomeDB19 web 

resource, which integrates data from the ENCODE projects and other data sources regarding 

various types of functional assays including DNaseI-seq, ChIP-seq, RNAseq, and eQTL 

analyses. RegulomeDB showed that SNP rs1811197 has the potential to affect antigen 

binding and is linked to expression of a gene target. We were unable to find information 

pertaining to the possible functional role for the other significant SNPs.

DISCUSSION

In this study, significant associations were found between SNPs mapped to the MHC class I 

(HLA-E, HLA-B) and class II (HLA-DOA, HLA-DQA2, and HLA-DBP1) genes and DA in a 

group of exposed workers. Serum specific antibodies for diisocyanate antigens and the 

presence of eosinophils and activated T-cells in bronchial biopsies of workers with DA 

suggest a mechanistic role for antigen-specific immunological mechanisms.22–25 T cells are 

activated by the interaction of the T-cell receptor with antigenic peptides complexed to 

MHC molecules. The class I (HLA-A, -B, -C, -E, -F, and -G) and class II (HLA-DR, -DQ, -

DM, and -DP) MHC molecules are responsible for the presentation of antigenic peptides to 

CD8+ and CD4+ T cells, respectively.26 Since HLA molecules are highly polymorphic, 

specific peptide epitopes presented to T cells widely vary across the HLA genes and their 

alleles. The average SNP density varies from 1 to >60 SNPs per kb across the MHC region 

and these variations are located mainly in the class I and class II HLA molecules. Therefore, 

it is plausible that genetic variations in the HLA genes markedly influence individual 

susceptibility.

In our analysis, two SNPs in MHC class I genes, HLA-B and HLA-E, were independently 

associated with DA. The carriage of the minor allele for HLA-B rs1811197 SNP was 

associated with an increased risk of DA. Functional annotation of SNPs using RegulomeDB 

showed that the rs1811197 affects the expression level of the HLA-C gene. HLA-B and HLA-

C are classical MHC class I molecules that play a central role in antigen processing/
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presentation and immune regulation. Data on the association between HLA-B and HLA-C 

SNPs/alleles and asthma are restricted to a few studies. Beghe et al27 examined possible 

associations of class I (HLA-A, HLA-B, and HLA-C) alleles with DA in 142 subjects with 

TDI-asthma and a comparator group of 50 asymptomatic exposed subjects. No significant 

associations were identified between HLA class I alleles and TDI-asthma.27 Nevertheless, 

associations between different HLA-B alleles (HLA-B8, B12, B16 and Bw61) and asthma 

phenotypes have been reported.28–30 HLA-E, a nonclassical MHC class I molecule, plays an 

important role in both natural and acquired immune responses by binding peptides derived 

from the leader sequence of other HLA class I molecules. We found rs1573294 SNP that 

mapped to HLA-E to be associated with an increased risk of DA. Although the functional 

consequence of this SNP is unknown, this association suggested a possible involvement of 

the HLA-E region in susceptibility to DA. A functional role for MHC class I molecules in 

the elicitation of DA has not been defined. Hypothetically, it is possible that reactive 

diisocyanates, known to penetrate cell membranes, could significantly modify endogenous 

cytosolic proteins, which could then be taken up by proteasomes and digested into antigenic 

peptides. Peptides could be transported to the endoplasmic reticulum, bound and captured by 

class I molecules, and transported to the cell surface for antigen presentation.

The HLA class II region is one of the most gene-dense regions in the human genome and is 

associated with many diseases and the dense LD pattern can complicate the identification of 

functional variants. We found a significant association between SNPs mapping to HLA-

DPB1, HLA-DQA2, and HLA-DOA genes and increased risk of DA. The HLA-DPB1 

rs928976 SNP has not been previously associated with any disease risk, and no functional 

data have been reported to date. Nevertheless, previous studies found a significant 

contribution of other HLA-DPB1 alleles to asthma risk. A haplotype including DPB1*05 

(DRBI*15-DPB1*05) was strongly associated with TDI-induced asthma in a Korean 

population13 and the allelic frequencies of HLA DQB1*06-DPB1*05 and DRB1*15-

DQB1*06-DPB1*05 were significantly higher in TDI asthmatic patients. The same 

investigators later conducted another study that included subjects with TDI asthma, 

asymptomatic exposed controls, and unexposed normal controls using high-resolution HLA 

analysis. The frequency of the HLA DRB1*1501-DQB1*0602-DPB1*0501 haplotype was 

found to be significantly higher in TDI asthmatic patients than in asymptomatic exposed and 

normal controls.12 Genetic variants in the HLA-DP locus were also associated with the risk 

of other asthma phenotypes, including allergic, pediatric, and aspirin-intolerant asthma.31–33 

These reports support our finding and suggest involvement of HLA-DBP1 in asthma 

pathogenesis.

We also identified two SNPs mapping to the HLA-DOA and DQA2 genes that were 

associated with DA (rs3128935 and rs7773955, respectively). HLA-DO is a nonclassical 

class II heterodimer consisting of α and β chains, which are encoded by the HLA-DOA and 

HLA-DOB genes. HLA-DOA has been proposed to have functional implications in 

autoimmunity and can inhibit the activity of HLA-DM genes in vitro that regulates the 

antigen loading and presentation of specific peptides.34 A recent study identified an SNP in 

HLA-DOA gene (rs9276977) significantly associated with rheumatoid arthritis in African 
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Americans.35 Nevertheless, there are no studies showing association between HLA-DOA 

SNPs and asthma phenotypes.

HLA-DQ consists of α and β chains that are encoded by HLA-DQA1 and HLA-DQB1, 

respectively. These two loci are adjacent to each other and in close genetic linkage to HLA-

DR. HLA-DQ was the first asthma-susceptibility locus to be identified and plays a major role 

in peptide loading of MHC II molecules.36 Our results showed a significant association 

between HLA-DQA2 rs7773955 SNP and DA risk. Although the functional role of this SNP 

is not known, previously reported associations between HLA-DQ alleles and asthma 

phenotypes suggest a role for DQ in the asthmatic process. Bignon et al11 found that the 

HLA DQB1*0503 and the allelic combination DQB1*0201/0301 were associated with 

susceptibility to DA. On the contrary, the DQB1*0501 allele and the DQA1*0101-

DQB1*0501-DR1 haplotype were reported to be protective.11 Although not replicated in 

other European populations, Mapp et al 8,37 confirmed these results and also reported an 

association between HLA-DQB1*0503 allele with an aspartic acid at residue 57 and TDI 

asthma.38 Previous genome wide association studies have also shown associations between 

SNPs in the HLA-DQ/DR region and asthma phenotypes.39,40 The major strengths of this 

study include a well-defined phenotype and selection of candidate regions based on their 

functional role in disease pathogenesis. In addition, genetic associations were tested while 

adjusting for potential confounding factors and results were corrected for multiple 

comparisons.

The major limitations include small sample size due to the relative rarity of DA compared 

with other types of asthma; however, rigorous phenotypic characterization in this population 

helps maximize the discriminatory potential between study groups. Another limitation is that 

the controls were younger and had shorter exposure period than cases. This was 

unintentional due to difficulty in the recruitment of age-matched workplace controls. 

Nevertheless, it has been reported that nearly 40% and 60% of subjects exposed to 

isocyanates become symptomatic within 1 year and after 5 years of exposure, respectively.41

Taken together, this study showed novel associations between SNPs in MHC class I (HLA-

E, HLA-B) and class II (HLA-DOA, HLA-DQA2, and HLA-DBP1) genes and DA. The 

present results are consistent with the hypothesis that an immunological mechanism is 

involved in DA and that genetic variations within HLA genes play a major role in DA risk. 

Identification of significant polymorphisms and their allelic variations within the MHC is 

potentially important as the structural diversity of the MHC alleles influences peptide 

binding and controls disease susceptibility. For example, hypersensitivity syndrome induced 

by antiviral drug abacavir is strongly associated with the HLA-B*5701 allele that excluding 

those with this particular allele prior treatment is effective in preventing drug reactions.42 

Further studies are needed to validate the results reported herein and identify causative 

alleles behind these associations using high-resolution mapping.
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Learning Objectives

• Discuss previous research on genetic factors potentially contributing to asthma 

caused by diisocyanates and other low-molecular-weight sensitizers.

• Summarize the new findings on single-nucleotide polymorphisms (SNPs) of the 

major histocompatibility complex (MHC) associated with diisocyanate-induced 

asthma (DA).

• Discuss the implications for the mechanism of DA and the role of genetic 

variations of human leukocyte antigen (HLA) genes.
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TABLE 1

The Demographic Characteristics of the Study Groups

AWs (n = 67) DA+ Cases (n = 73)

Age (mean ± SE) 30.0 ± 0.93 42.4 ± 1.32*

Sex (female/male) 5/62 10/63

Exposure (mean months ± SE) 63.4 ± 2.71 146.3 ± 16.36*

Exposure (HDI; MDI; TDI) 67 HDI 39; 15; 18

Ethnicity (%, French Canadian) 99 92

Atopy (positive/negative) 36/27 41/32

Smoking Status (cur/ex/never) 26/13/28 11/26/36*

Smoking (pack/years ± SE) 6.2 ± 1.11 9.4 ± 1.66

*
P < 0.05.

AW, asymptomatic workers; DA+, symptomatic workers diagnosed with DA; HDI, hexamethylene diisocyanate; MDI, 4,4′-diphenylmethane 
diisocyanate; TDI, toluene diisocyanate.
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